Part 11:

Redefining the Ensemble Spread-Skill Relationship
from a Probabilistic Perspective




Traditional Ensemble Spread-Skill Relationship

Based on the premise that ensemble spread should provide a
forecast of forecast error.
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— Often characterized by the linear relationship between ensemble
spread and forecast error -- the

— Assumes:
= A linear dependency between ensemble spread and forecast error
= An end user that has a continuous sensitivity to forecast error
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The Real Deal

In theory, for a perfect ensemble of infinite size...

™ The strength of the correlation between ensemble spread

(0) and the ensemble mean forecast error (|eg,|) is limited
by the case-to-case spread variability ().

2  l-exp(-B?)
2 ] = , b= o[{
p=(0 |eE|v||) T o1- %exp(-Bz) B=std(In 0)

(Houtekamer, 1993)

= Even with infinite spread variability, spread and error are not
perfectly correlated (p < 0.8).
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Disappointing Results

Tropical Cyclone Tracks NCEP SREF Precipitation SAMEX '98 SREFs
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[c.f. Goerss 2000] [c.f. Hamill and Colucci 1998] [c.f. Hou et al. 2001]

- Highly scattered relationships, thus low correlations
m Often less than 0.4
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Encouraqing Results

UW MM5 SREF 10-m Wind Direction

SPREADERROR CORRELATICHN

— AllCases
= Extrame Spread (67%)
— - Mon-Extreme Spread (33%)
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[c.f. Grimit and Mass 2002]
More recent studies show that spread-

error correlations can be as high as 0.6-0.7
(Grimit and Mass 2002, Stensrud and Yussouf 2003)

- Potentially higher correlations can be achieved by
considering only cases with extreme spread
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An Inherently Deterministic Approach

— The expected value of the
absolute forecast error is
estimated in the regression.

Therefore, only an unsigned,
deterministic error forecast is
generated.

Abs EF Mean Error

The skill associated with i St
SUCh predICtlonS IS Very — — . .EEns:emﬁle Sta?l:nljard IZEJigvi:a'riu::u?r'fI

limited.
Idealized, statistical

ensemble forecasts.

N = 2500
M =50; B = 0.5
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A Cateqgorical Approach

Example Cost Functions

= Confinuous End User
= = Categorical End Usar
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— Some have concluded that categorical measures of forecast

spread are more skillful predictors of forecast accuracy
(Toth et al. 2001, Ziehmann 2001)

I e.g.— statistical entropy (ENT), mode population (MOD)
™ Requires that forecasts/verification be divided into predetermined bins

Need idealized Houtekamer-type investigation to verify
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A Simple Stochastic Model of Spread-Skill

An extension of the Houtekamer (1993) model of spread-skill

PURPOSES:

1) To establish practical limits of forecast error predictability that
could be expected given ideal ensemble forecasts of finite size.

2) To address the user-dependent nature of forecast error
estimation by employing a variety of spread and error metrics.

To extend forecast error prediction to a probabilistic
framework.
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A Simple Stochastic Model of Spread-Skill

1. Draw today’s “forecast uncertainty” from a log-normal
distribution (Houtekamer 1993 model).

In(o) ~N(In(oy) , B?)

Create synthetic ensemble forecasts by drawing M
values from the “true” distribution.
F~N(Z,0?);i=12,...M

Draw the verifying observation from the same “true”
distribution (statistical consistency).
V~N(Z,0?)

Statistical ensemble forecasts at a single, arbitrary location

104 realizations (cases)

Assumed:
I Gaussian statistics
M statistically consistent (perfectly reliable) ensemble forecasts

Varied:

7 temporal spread variability ()
™ finite ensemble size (M)
7 spread and skill metrics (continuous and categorical)
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N = 10000
B=05
STD-AEM correlation STD-error correlation

Idealized STO-AEM Correlation Sensitivity ldealized STD—Error Correlation Sensitivity, f= 0.5

m— STD-AEM
STD-AES

v STD-AAE

= = STD-RASE

 emmmmmm T~ STD-CRPS
-

RICIRLE]

o o
[ [
a a
(5] (5]
3 3
g [a]
[ [
cC cC
= =
& &
o o
=] =]
[} [}

10 15 20 25 0 35 4D 45 15 20 25 30 35 40 45
Ideal Ensemble Size (M) Heal Ensemble Size (M)

spread
STD =Standard Deviation AES = Absolute Error of a Single ensemble member

AAE = ensemble-Average Absolute Error
error RASE = square Root of ensemble-Average Squared Error
AEM = Absolute Error of the ensemble Mean CRPS = Continuous Ranked Probability Score
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ldealized Spread-Error Scatter Diagrams n = 10000
M =50; =0.5

STD-AEM; r=0.545 STD-RASE; r=0.848 STD-CRPS; r=0.555

(continuous-continuous)
1|£lil 1512!

EMNT-AEM, r = 0.361 EMWNT-RASE; r=0.540

(categorical-continuous)

(categorical-categorical)
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A Probabilistic Perspective

Abs EF Mean Error
EF Mean Error
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Connection between statistical consistency and the spread-
skill relationship:
" Expect forecast variance and error variance to coincide

= “Skill” part of spread-skill relationship needs to be understood
as the error variance, not the error itself

@ Thus, statistical consistency and spread-skill association are
related concepts!
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Conditional Error Climatoloqy (CEC)

Use historical errors,

, as probabilistic
forecast error predictions

@ Tradeoff between number of
bins and number of samples

7 Variance-based conditional
error climatology method:

= Evaluate skill by cross-
validation, relative to the
overall error climatology:
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EF Mean Error

600 800 1000 1200 1400 1600 1800 2000
Ensemble Variance

Idealized, statistical
ensemble forecasts.

N = 2500
M =50; B = 0.5
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ldealized Probabilistic Error Forecast Skill

(continuous case)
May use the ensemble Frobabilistic Forecast Error Prediction Skill (M=50, p=0.5)
variance directly to get a T ERA-CL]
probabilistic error forecast . T VAR_CEC
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VAR-CEC best among spread-
based CEC methods when
using a continuous —
Ve”f' Ca'“ on Ensemble Variance (VAR) Category Mumber

_ . _ |dealized, statistical
Predictability highest for ensemble forecasts.
extreme spread cases

m Reinforces earlier results N = 10000
M =50;B=0.5

22 April 2004 11:00 AM NCEP Invited Talk; Camp Springs, MD




Sharpness Calibration / Reliability

Probabilistic Forecast Error Prediction Sharpress (M=50, f=0.5) ENS-PDF
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(categorical case)

Probabilistic Forecast Error Prediction Skill (M=50, p=0.5)
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Idealized, statistical
-—-= ensemble forecasts.
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UW SREF System Summary

# of EF Initial Forecast |Forecast
Members | Type Conditions Model(s) | Cycle Domain

8 Ind. Analyses, | “Standard” 36km, 12km
1 Centroid,
8 Mirrors

8 “native” 00z, 127
large-scale

Analysis-Centroid Mirroring Ensemble
Poor-Man’s Ensemble

Single-Model Multi-Analysis
Perturbed-Model Multi-Analysis
Multi-model Multi-Analysis
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Mesoscale SREF Data:

m 129 cases (31 OCT 2002 — 28 MAR 2003)
B 48h forecasts initialized at 0000 UTC

7 Parameters of Focus:
m 12 km Domai ind Speed and Direction at 10m (WSPD,,, WDIR;,)

= Short-term mean bias correction
B Separately applied to: each ensemble member, location, forecast lead time
B Training window chosen to be 14 days

Verification Data;

= 12 km Domain: RUC20 analysis
NCEP 20 km mesoscale analysis

observations
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Mean CRPSS

Real Probabilistic Error Forecast Skill

(no bias correction)

12-KM UWME T, FEP SKILL —- 2002-2003 cocl season (129 cases) 12-KM UWME T, FEP SKILL —- 2002-2003 cool season (129 cases)
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VAR-CEC beats ENS-PDF handily

VAR-CEC skill is generally small, but positive over 40-70%
of the grid points through F24
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Real Probabilistic Error Forecast Skill

(no bias correction)

12-KM UWME+ T, FEP SKILL -- 2002-2008 cool season (129 cases) 12-KM UWME+ T, FEP SKILL -- 2002-2008 cool season (129 cases)
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— UWME+ exhibits larger spread-error correlations

— Larger VAR-CEC skill (positive CRPSS into day-2 over 40-
50% of the grid points)

— ENS-PDF improves (better raw PDF from UWME+)
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Effect of Post-Processing

(14-day grid point bias correction)

12-KM "UWME+ T, FEP SKILL -- 2002-2003 cool season (129 cases) 12-KM "UWME+ T, FEP SKILL —- 2002-2003 cool season (129 cases)
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Bias correction reduces spread-error correlations and
effectiveness of the VAR-CEC approach

= Temporal spread variability decreases

— ENS-PDF closes the gap in performance, but is still below
the baseline

22 April 2004 11:00 AM NCEP Invited Talk; Camp Springs, MD




Conclusions

— Traditional spread-error correlation is not the best way to
describe the spread-skill relationship nor does it provide an
adequate framework for making skillful forecast error
predictions.

= Probabilistic forecast error prediction is a good alternative.

= If the true PDF is not well forecast, a spread-based CEC method
provides a viable methodology.

Continuous (categorical) measures of ensemble spread are
most appropriate as forecast error predictors for end users with
a continuous (categorical) cost function.

Forecast error predictability is higher for cases with extreme
spread, especially low spread cases.

A simple bias correction improves ensemble forecast skill, but
may also degrade forecast error predictability via the spread-
based traditional and CEC methods.
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QUESTIONS?
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Contact Information

Eric P. Grimit, Ph.C.
University of Washington, Dept. of Atmospheric Sciences
Box 351640; Seattle, WA 98195
E-mail: epgrimit@atmos.washington.edu
Ph.: (206) 543-1456
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